Physical basis of large microtubule aster growth

نویسندگان

  • Keisuke Ishihara
  • Kirill S Korolev
  • Timothy J Mitchison
چکیده

Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape–motion relationships of centering microtubule asters

Although mechanisms that contribute to microtubule (MT) aster positioning have been extensively studied, still little is known on how asters move inside cells to faithfully target a cellular location. Here, we study sperm aster centration in sea urchin eggs, as a stereotypical large-scale aster movement with extreme constraints on centering speed and precision. By tracking three-dimensional ast...

متن کامل

Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells.

Ray Rappaport spent many years studying microtubule asters, and how they induce cleavage furrows. Here, we review recent progress on aster structure and dynamics in zygotes and early blastomeres of Xenopus laevis and Zebrafish, where cells are extremely large. Mitotic and interphase asters differ markedly in size, and only interphase asters span the cell. Growth of interphase asters occurs by a...

متن کامل

Evidence for microtubule subunit addition to the distal end of mitotic structures in vitro

HeLa cells blocked in metaphase with 0.04 micrograms/ml of the microtubule poison nocodazole were shown to contain large numbers of microtubules with typical mitotic organization but no cenriole. Lysis of nocodazole-poisoned cells in a microtubule reassembly buffer containing 0.5 M PIPES, 2.5% dimethyl sulfoxide, 1 mM EDTA, 1 mM MgCl2, 1 mM GTP, 1% Triton X-165, 0.5% sodium deoxycholate, 0.2% S...

متن کامل

Cytoskeleton Dynamics: Mind the Gap!

A new study presents a quantitative biophysical model of microtubule aster growth with autocatalytic microtubule nucleation. The model accounts for asters that grow indefinitely, even when their microtubules are unstable.

متن کامل

Human Sperm Aster Formation and Chromatin Configuration in Rabbit Oocytes Following Intracytoplasmic Sperm Injection Using a Piezo-Micromanipulator

In human fertilization, the sperm centrosome nucleates a radial array of microtubules called the sperm aster. The sperm aster is responsible for apposition of male and female pronuclei, and later gives rise to the first meiotic spindle. The objective of this study was to determine microtubule assembly and chromatin configuration in rabbit oocytes following intracytoplasmic injection with human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016